Georgia Institute of Technology Georgia Institute of Technology

Research Horizons

Georgia Tech's Research Horizons Magazine
Menu

Did Methane-Making Microbes Warm Early Earth?

Portrait of two researchers standing side by side in a lab

Marcus Bray, a biology Ph.D. candidate, and Jennifer Glass, assistant professor in Georgia Tech's School of Earth and Atmospheric Sciences, are shown in the laboratory where tiny incubators simulated early Earth conditions. Photo: Rob Felt.

For much of its first two billion years, Earth was a very different place: Oxygen was scarce, microbial life ruled, and the sun was significantly dimmer than it is today. Yet the rock record shows that vast seas covered much of the early Earth.

Scientists have long debated what kept those seas from freezing. A popular theory is that potent gases such as methane created a thicker greenhouse atmosphere than is required to keep water liquid today.

In the absence of oxygen, iron built up in ancient oceans. Under the right chemical and biological processes, this iron rusted out of seawater and cycled many times through a complex loop, or “ferrous wheel.” Some microbes could “breathe” this rust to outcompete others, such as those that made methane. When rust was plentiful, an “iron curtain” may have suppressed methane emissions.

“The ancestors of modern methane-­making and rust-breathing microbes may have long battled for dominance in habitats largely governed by iron chemistry,” said Marcus Bray, a biology Ph.D. candidate in the laboratory of Jennifer Glass, an assistant professor in Georgia Tech’s School of Earth and Atmospheric Sciences and principal investigator of the study, funded by NASA’s Exobiology and Evolutionary Biology Program. The research was reported in the journal Geobiology.

Collaborator Sean Crowe, an assistant professor at the University of British Columbia, collected mud from the depths of Indonesia’s Lake Matano, an anoxic iron-rich ecosystem that uniquely mimics early oceans. Bray placed the mud into tiny incubators simulating early Earth conditions and tracked microbial diversity and methane emissions over a period of 500 days. Minimal methane was formed when rust was added; without rust, microbes kept making methane despite multiple dilutions.

The team concluded that methane production could have persisted in rust-free patches of ancient seas. Unlike the situation in today’s well-aerated oceans, where most natural gas produced on the seafloor is consumed before it can reach the surface, most of this ancient methane would have escaped to the atmosphere to trap heat from the early sun.

Related: Behind the Iron Curtain: How Methane-Making Microbes Kept the Early Earth Warm, April 17, 2017

Subscribe to Research Horizons
Get the latest Georgia Tech research news through our free print magazine, monthly electronic newsletter, and Twitter feed.

 

Georgia Tech is home to more than 2,500 faculty members who conduct scientific and engineering research in hundreds of different research areas.

Related Stories

Read More
Read More
Read More

Media Contacts

John Toon

John Toon

Director of Research News
Phone: 404.894.6986
photo - Jason Maderer

Jason Maderer

National Media Relations
Phone: 404.385.2966
photo - Ben Brumfield

Ben Brumfield

Senior Science Writer
Phone: 404.385.1933
Josh Brown

Josh Brown

Senior Science Writer
Phone: 404-385-0500

Subscribe & Connect

Follow Us on Twitter:

@gtresearchnews

RSS Feeds

Subscribe to our RSS Feeds with your favorite reader.

Email Newsletter

Sign up to receive our monthly email newsletter.

Research Horizons Magazine

Sign up for a free subscription to Research Horizons magazine.